Ultra High Strain Rate Nanoindentation Testing
نویسندگان
چکیده
Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.
منابع مشابه
Study of Damage distribution over the Primary Shear Zone in the Metal Cutting using Nanoindentation
In our effort to develop metal cutting as a high strain rate test, we are interested in mapping the damage distribution over the primary shear zone (PSZ). The approach is to quantify the modulus degradation via nanoindentation and use this as a measure of damage. It is shown that the hardness of the material increases and the modulus degrades as it shears through the PSZ. Introduction There are...
متن کاملFabrication and thermo-mechanical behavior of ultra-fine porous copper
Porous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous ...
متن کاملHigh-strain-rate nanoindentation behavior of fine-grained magnesium alloys
rate nanoindentation behavior of fine-grained magnesium alloys. " Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The effects of temperature and alloying elements ...
متن کاملSelf-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion
A Pb-62% Sn two-phase eutectic alloy was processed by high-pressure torsion (HPT) and stored at room temperature (RT) to investigate the occurrence of self-annealing. The microstructural characteristics and mechanical properties were recorded during self-annealing using scanning electron microscopy, tensile testing and nanoindentation. Processing by HPT produces a weakening effect but storage a...
متن کاملAdvanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume
Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. ...
متن کامل